
Back to the Future for Consistency-based Trajectory Tracking
James Kurien

NASA Ames Research Center
MS 269-3, Moffett Field, CA 94035

jkurien@arc.nasa.gov

P. Pandurang Nayak
PurpleYogi.com and RIACS,

201 Ravendale Drive, Mountain View, CA 94043.
nayak@purpleyogi.com

Abstract

Given a model of a physical process and a sequence of com-
mands and observations received over time, the task of an
autonomous controller is to determine the likely states of
the process and the actions required to move the process to
a desired configuration. We introduce a representation and
algorithms for incrementally generating approximate belief
states for a restricted but relevant class of partially observ-
able Markov decision processes with very large state spaces.
The algorithm incrementally generates, rather than revises, an
approximate belief state at any point by abstracting and sum-
marizing segments of the likely trajectories of the process.
This enables applications to efficiently maintain a partial be-
lief state when it remains consistent with observations and re-
visit past assumptions about the process’s evolution when the
belief state is ruled out. The system presented has been im-
plemented and results on examples from the domain of space-
craft control are presented.

Introduction
Given a model of a physical system and a sequence of com-
mands and observations received over time, the task of an
autonomous controller is to determine the likely states of
the system and the actions required to move the system to
a desired configuration. Focusing on the state identification
question, abelief stateis a probability distribution over the
possible states of a system. If the system has the Markov
property, then the influence of a new command and observa-
tion upon the belief state can be integrated via Bayes’ rule.
The updated belief state is a sufficient statistic, capturing
within a single distribution all knowledge about the current
state of the system contained within a history of commands
and observations. The controller then makes use of the up-
dated belief state in selecting an action.

Example 1 Consider the spacecraft propulsion subsystem
of Figure 1. The helium tank pressurizes the two propel-
lant tanks. When a propellant path to either engine is open,
the pressurized tanks force fuel and oxidizer into the engine,
producing thrust. Not shown are valve drivers that control
the latch valves and a set of flow, pressure and acceleration
sensors that provide partial observability. A model of a sys-
tem specifies the modes of each component (e.g., a valve
may be open, closed, stuck closed, and so on), behavior in
each mode (e.g.,a closed valve prevents flow), mode transi-
tions (e.g.,valves usually open when commanded, but stick

Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Helium tank

Fuel tank

Oxidizer tank

Main
Engines

Valve
Pyro valve

Pyro ladder

Regulator

Figure 1: Propulsion system schematic.

closed with probabilityp) and connections between compo-
nents (e.g.,fuel flow into an engine is equal to the flow out
of the attached fuel valve).

Consider the problem of determining the likelihood of
the possible states of this subsystem. Unfortunately, com-
puting a belief state in general requires enumeration of the
state space. The propulsion subsystem has 38 components
with an average of 3 states each. More complete space-
craft models capture 150 or more components averaging
4 states, yielding a state space of2300 or more and mak-
ing complete enumeration implausible. One alternative is
to track an approximation whose computation does not re-
quire enumeration of the state space, ideally enumerating
only the most likely portion of the belief state at each point
in time. Livingstone(Williams & Nayak 1996) tracksn ap-
proximately most likely states of the system by transition-
ing a small number of tracked states by the transitions that
are most likely, given only the current observations. This
approximation is extremely efficient and well suited to the
problem of tracking the internal state of a machine, where
the likelihood of the nominal or expected transition domi-
nates, and immediate observations often rule out the nomi-
nal trajectory when a failure occurs. The task then becomes
one of diagnosing the most likely system transition, cho-
sen from combinations of component transitions, that would
be consistent with the unexpected observations. Using this
technique,Livingstoneis able to perform approximate state
identification and reconfiguration of systems with hundreds
of state variables. It has been applied to the control of a
number of systems within NASA and is an integral part of
the Remote Agent architecture demonstrated in-flight on the
Deep Space 1 spacecraft in 1999 (Muscettolaet al. 1998;
Bernardet al. 1998). Unfortunately, the true trajectory may
not be among the most likely given only the current obser-
vations. Consider the following example.

Probability

Time 0 1 2 3

VDU
on

VDU
failed

Valves
Open

Valves
Closed

Multiple
Spontaneous

Valve
Closures

No Change
VDU
off

Pump

Valve
Driver Unit

Figure 2: Evolution of a Valve Driver Unit and Valves

Example 2 Figure 2 illustrates a small system and two pos-
sible trajectories. The pump pressurizes the system and the
valves, if open, allow a fluid flow. The valve driver unit
(VDU) commands the two valves in parallel via the data bus
represented by dashed lines. The graph to the right repre-
sents the probability of two possible trajectories. The filled
circles represent the true state of the system. At time 0 the
VDU is off, the valves are closed and the pump is off. At
time 0 the VDU is commanded on. For the sake of illus-
tration, consider an approximate belief state of size 1. The
state wherein the VDU is on is placed into the belief state.
The true state wherein the VDU is failed is discarded. At
time 1, the VDU is commanded to open its valves. Since
the only state in the belief state assumes the VDU is on, the
single state in the updated belief state has the VDU on and
all valves open. In the true, untracked state the valves are
closed, as they never received a command. At time 2, the
pump is turned on. Pressure is observed at the outlet of the
pump, yet no flow is observed downstream of the valves.
Failure of the pump alone has zero probability, given the ob-
servations. Failure of the VDU in the current time step has
no effect on the valves. Thus, the most likely next state con-
sistent with the observations requires that all valves sponta-
neously and independently shut. Regardless of the number
of valves and the unlikeliness of spontaneous closure, this
transition must be taken if it exists. If it does not exist, the
belief state approximation becomes empty.

In general, as the true state evolves, the tracked subset of
states may need to undergo arbitrarily unlikely transitions
in order to remain consistent with the observations. While
only one trajectory is tracked in this example, for any frac-
tion of the trajectories that are tracked, an example can be
constructed wherein the actual state of the system falls out-
side the tracked fraction and the error in the approximation
may become arbitrarily large. We propose an alternative to
committing to a subset of the current belief state or maintain-
ing an approximation of the entire belief state. We propose
to maintain the information necessary to begin incremen-
tally generating the current belief state in best-first order at
any point in time. Since we do not update the entire belief
state, we do not have a sufficient statistic, so a history must
be maintained. We introduce a variable to represent every
state variable, command and observation at every point in
time and an algorithm for incrementally generating the ex-
act belief state at any point. Duplicating the entire set of
variables at each point in the history seems impractical ex-
cept for short duration tasks. We apply two approximations
motivated by our experience modeling physical systems for

Livingstone. The first duplicates only a small number of
carefully selected variables at each time point. This approx-
imation is conservative in that does not eliminate any feasi-
ble trajectories but may admit certain infeasible trajectories.
These may be eliminated by future observations. The second
limits the length of the history that is maintained by absorb-
ing older variables into a single variable that grossly approx-
imates them. This allows an approximate belief state to be
generated at any point in time from a constant number of
variables. The variables represent an exact model of system
evolution over the recent past, an approximate model over
the intermediate past, and a gross summarization over the
more distant past. This allows assignment of the most likely
past transitions to be revisited as new observations become
available. The fewest variables, and thus the least flexibil-
ity, are allocated to segments of the system trajectory that
have remained consistent with the system’s observed evolu-
tion for the longest time.

In the following sections of the paper, we start by giving
the complete history representation followed by a simple,
exact, and intractable algorithm for enumerating the belief
state. We introduce optimizations and approximations in or-
der to gain tractability while maintaining the ability to re-
vise assessments of past system evolution. We introduce a
software systemL2 (for Livingstone2) that embodies these
ideas. Finally we present the results of runningL2 on sce-
narios developed while applyingLivingstonewithin NASA.

Transition Systems
We wish to represent the possible histories of a system com-
posed of non-deterministic, concurrent automata given the
commands issued to the automata and their output. We cre-
ate a structure that allows incremental, best-first enumera-
tion of all possible trajectories by extending the formalism
of Livingstone. In order to compactly represent the trajec-
tories, we add a set of transition variables that represent the
non-deterministic transitions each automaton may make at
each time step. Each assignment to a transition variable has
a likelihood representing the prior probability of the corre-
sponding non-deterministic transition occurring. One trajec-
tory of the system is thus an assignment to each transition
variable, and given the appropriate independence assump-
tions, the set of trajectories can be incrementally enumer-
ated in order of likelihood. In order to capture the feasible
behaviors of the automata, we introduce a set of formulae
MΣ describing the input/output mapping of the automata
in each state, and a set of formulaeMT for describing the
feasible transitions of the automata.

Definition 1 A transition system S is a tuple
〈Π, T ,D, C, MΣ,MT 〉, where

• Π is a set ofstate variablesrepresenting the state of each
automaton. Letn denote the number of automata andm
denote the number of discrete, synchronous time steps
over which the state is to be tracked.Π then contains
m× n variables.Πt will denote the set of state variables
representing the state of the system at time stept. Each
state variabley ranges over a finite domain denotedδ(y).

The temporal variable representing the occurrence of vari-
abley at time stept is denotedyt.
• T is a set oftransition variables. The transition variable

that represents the transition of state variabley from time
t to t+ 1 is denotedτy,t. Each value in the domain ofτy,t
is assigned a probability.
• D is a finite set ofdependent variables.
• C is a finite set ofcommand variables.
• Statest is an assignment toΠt∪T t∪Dt∪Ct
• MΣ is a propositional formula overΠt andDt that spec-

ifies the feasible subset of the state space. A state is feasi-
ble if it makes an assignment toΠt∪Dt that is consistent
with MΣ.
• MT is a propositional formula overΠt, Dt, Ct, T t and

Πt+1 that specifies the feasible sequences of states.MT
is a conjunction of transition formulae modeling possible
evolutions ofyt to yt+1 of the form

φt ∧ (τy,t = τ∗)⇒yt+1 = y∗

whereφt is a propositional formula overΠt∪Dt∪Ct, and
τ∗, representing a choice among the non-deterministic
transitions ofy, is in δ(τy,t). The sequencesi, si+1 is
feasible if the assignment made bysi∪si+1 is consistent
withMT .

Example 3 We introduce a transition system to model a
VDU and two valves. The variables corresponding to the
VDU consist of a state variablevdu representing the mode
(on, off, or failed), the transition variableτvdu, a command
variablecmdin representing commands to the VDU or its
associated valves (on, off, open, close, none), and a depen-
dent variablecmdout representing the command the VDU
passes on to its valves (open, close, or none). The feasible
states of the VDU are specified by the formulae
vdu = on ⇒ (cmdin = open⇒ cmdout = open)

∧ (cmdin = close⇒ cmdout = close)
∧ ((cmdin 6= open ∧ cmdin 6= close)
⇒ cmdout = none)

vdu = off ⇒ cmdout = none
vdu = failed ⇒ cmdout = none

together with formulae like(vdu 6= on) ∨ (vdu 6= off) ∨
(vdu 6= failed), . . . that assert that variables have unique
values. The time step subscript is omitted, indicating that
all clauses refer to variables within the same time step. The
valvesv1 andv2 each have a state variable of domain (open,
closed, or stuck), a transition variableτvi and a dependent
variableflowvi of domain (zero, nonzero). The feasible
states of thev1 are specified by the formula below. The
feasible states ofv2 are specified similarly.

v1 = open ⇒ flowv1 = nonzero
v1 = closed ⇒ flowv1 = zero
v1 = stuck ⇒ flowv1 = zero

MT for τvdu is as follows.
τvdu,t = nominal⇒
vdut = off ∧ cmdint = on ⇒ vdut+1 = on
vdut = off ∧ cmdin 6= on ⇒ vdut+1 = off
vdut = on ∧ cmdint = off ⇒ vdut+1 = off
vdut = on ∧ cmdint 6= off ⇒ vdut+1 = on
vdut = failed ⇒ vdut+1 = failed

τvdu,t = fail⇒vdut+1 = failed

MT for τv1 is shown below.τv2 is asτv1.

τv1,t = nominal⇒
v1t = closed ∧ cmdoutt = open ⇒ v1t+1 = open
v1t = closed ∧ cmdoutt 6= open ⇒ v1t+1 = closed
v1t = open ∧ cmdoutt = closed ⇒ v1t+1 = closed
v1t = open ∧ cmdoutt 6= close ⇒ v1t+1 = open
v1t = stuck ⇒ v1t+1 = stuck

τv1,t = stick⇒v1,t+1 = stuck

Infinitesimals
In order to complete the transition system model shown in
Example 3, we require the probability of eachτy,t assign-
ment, representing the prior probability of each possible
component transition. Experience withLivingstonesuggests
that an order of magnitude probability scale is sufficient for
two reasons. First, the internal behavior of a machine is usu-
ally far less stochastic than its interaction with its environ-
ment. There is an expected or nominal behavior that a com-
ponent will exhibit for a given state and input. Failures are
one or more orders of magnitude less likely. Second, pre-
cise estimates for these priors are often either inaccessible
or unknown. In the case of spacecraft, the components may
be unique or they may be destined for a new operating en-
vironment. However, the relative plausibility of each failure
mode during operation can be elicited quite easily. In this
work, we formalize and capitalize on these characteristics
of the priors by making use of infinitesimals (Goldszmidt &
Pearl 1992) to model the relative likelihoods of failures.

An infinitesimal probability is represented by an infinites-
imally small constant raised to an exponent referred to as the
rank. The rank can be considered the degree of unbelievabil-
ity. Intuitively, one would not consider a rank 2 infinitesimal
believable unless all rank 0 and rank 1 possibilities had been
eliminated. Composition of infinitesimals has many desir-
able properties. IfA andB are independent events, then

Rank(AB) = Rank(A) +Rank(B)

Rank(A ∨B) = min(Rank(A), Rank(B))

Thus an outcome that can occur through multiple indepen-
dent events has ranki if one event has ranki and the re-
maining events, even if arbitrarily many, have ranks ofi or
more. This property is key. It allows us to consider only the
most likely trajectories leading to a state: if a sequence of
events of ranki ends in statesj , then an arbitrary number
of higher rank (i.e. less likely) trajectories leading tosj will
not change its rank. Similarly, if statesj is reached by a tra-
jectory of ranki, and no trajectory of ranki or less reaches
sk, thensj is more likely thansk. We need not consider the
possibility that a vast number of unlikely trajectories lead to
sk and together increase its likelihood above that ofsj . We
frame our algorithms in terms most likely trajectories, know-
ing the direct correspondence to most likely states given the
infinitesimal interpretation of the priors.

Trajectory Identification
Definition 2 A trajectory for S is a sequence of states
s0, s1, . . . sm such that for allt, 0 < t < m, st is consis-
tent with MΣ and for allt, 0 < t < (m − 1), st∪st+1 is
consistent withMT .

t=0

vdu
τvdu

off

cmdin on

cmdout

closedv1

τv1

Flowv1 zero

v2

τv2

Flowv2 zero

closed

t=1

open

zero

zero

t=2

none

zero

zero

Figure 3: Evolution of the VDU/valve system

Consider the problem of determining the state of a phys-
ical process modeled by a transition systemS at each point
in a trajectorys0 . . . sm. The subset of the dependent vari-
ablesD whose assignment corresponds to a measurement
from the process will be referred to as the observations,O.
We are given an assignment for the initial state,Π0. In ad-
dition we are given assignments to commandsCt and obser-
vationsOt for all 0 < t < m. The task is to choose assign-
ments toτy,t for all y andt so as to ensure consistency with
MΣ andMT and maximize the likelihood of the trajec-
tory. That is to say, given a starting state, a set of commands
and a set of observations, we must find the most likely se-
quence of transitions such that each state is consistent with
the state modelMΣ and the transitions are consistent with
the transition modelMT . We define trajectory likelihood
to be

∑m
t=0

∑n
y=1Rank(τy,t). This definition makes the

assumption that the likelihood of assignments toτy,t are in-
dependent ofτx,t. This is a common assumption and has
been an adequate approximation in practice. Note that this
assumption does not effect the handling of single failures
that manifest themselves at multiple points throughout the
system (e.g.,a power failure causing all lights to go out).

A Simple Tracking Algorithm

The transition-system formulation suggests an intuitive pro-
cedure to begin enumerating the belief state at any point.
The transition system is initialized withMΣ and a copy
of all variables, representing the initial state. At time step
t, we introduce a copy ofMΣ and a copy of all variables,
representing the next state of the system, as well as a copy
ofMT representing the constraints between the current and
next states. We assignCt andOt+1 according to how the
system was commanded and the observations that resulted.

Example 4 Figure 3 illustrates a trajectory-tracking prob-
lem of length three for the model of Example 2. Each box
represents an assignment. The command iscmdin and the
observations areflowv1 andflowv2. These variables are as-
signed by the problem, as is the start state. The highlighted
τy,t assignments must be chosen. The remaining variables
will be constrained based upon these assignments. The arcs
represent constraints fromMT . Constraints fromMΣ

are not shown. For allτy,t we will assumeRank(τy,t =
nominal) = 0 andRank(τy,t 6= nominal) = 1.

t=0

vdu
τvdu Fail

off

cmdin on

cmdout none

closedv1

τv1 nom
Flowv1 zero

v2

τv2 nom
Flowv2 zero

closed

t=1

nom

failed

open

none

closed

nom

zero

nom

zero

closed

t=2

failed

none

none

closed

zero

zero

closed

t=0

nom

off

on

none

closed

nom

zero

nom

zero

closed

t=1

nom

on

open

open

closed

Stick

zero

Stick

zero

closed

t=2

on

none

none

stuck

zero

zero

stuck

Single Failure Double Failure

Figure 4: Two evolutions of the system

Trajectories may be enumerated in order by enumerating
assignments to allτy,t in order of the sum of the ranks,
then testing for consistency withMT and MΣ. Conflict-
directed, best-first search, orCBFS(Dressler & Struss 1992;
de Kleer & Williams 1989; Williams & Nayak 1996) greatly
focuses this process by using conflicts. In this context, a con-
flict is a partial assignment toT andO that is inconsistent.
When a candidate solution is found to be inconsistent, the
conflict is recorded in a database,ConflictDB. No further
candidates that contain a known conflict are generated.

Example 5 Figure 4 illustrates the two lowest cost solutions
to the above problem would be found byCBFS. They repre-
sent a single failure of rank 1 at time 1 and a double failure
of rank 2 at time 2, respectively.

While applying CBFS to the full transition system exactly
enumerates the most likely trajectories, and thus states, in
order, problem size is a significant issue. Letp denote the
number of propositions needed to represent each possible
value of each variable inT ∪Π∪C∪D∪O. These proposi-
tions are constrained by a copy ofMT and MΣ at each
time step. Testing consistency of anm-step candidate tra-
jectory is a consistency problem ofm× p propositions and
m × | MT ∪MΣ | clauses. For the Deep Space 1 model,
this ism× 4041 propositions andm× 13, 503 clauses. The
remainder of this paper discusses methods that reduce the
size of the consistency problem to be solved, eventually de-
riving a method that allows a constant problem size.

Problem Size Reduction
In this section, we reduce the structure needed to represent
the evolution of the system at a time point from a complete
copy of the system model to a small number of variables
and clauses. Intuitively, when a command is issued to the
system, only a small number of components participate in
transmitting that command through the system or transition-
ing in response to the command. Consider Figure 5. The
squares represent state variables, the lines sets of constraints
fromMT . As of time 7, the valves, pump and VDU have
not been commanded nor have they interacted with other
components by passing a command. If we did not detect
a failure of any of these components, we can represent the
possibility that they remained idle or failed in a localized
and unobservable way with a single set of variables and con-

...
...

t=0

vdu

v1
v2

Present, t = 7

Yi

Yj

Idle & Failure Clauses

Idle & Failure Clauses

Idle & Failure Clauses

Idle & Failure Clauses
pump

Figure 5: Evolution before commanding the valves

...

...

t=0

vdu

v1
v2

Yi

Yj

Idle & Failure Clauses

Idle & Failure Clauses

Idle & Failure Clauses

Present, t = 8
Idle & Failure Clauses

Cmd & Failure Clauses

Cmd & Failure Clauses

Idle & Failure Clausespump

t=7

Figure 6: Evolution upon commanding the valves

straints as illustrated. At time 7 we command the valves on.
We require variablesv18 andv28 to represent the new states
of the valves.MT suggestsvdu7, v17 andv27 will inter-
act withv18 andv28. These variables, along with necessary
transition variablesτvdu,7, τv1,7 and,τv2,7, are introduced to
the system with the appropriate clauses fromMT . For each
other variabley, the variable representingy7 is adequate to
representy8. Figure 6 illustrates this process. In order to
derive a well-founded algorithm from these intuitions, we
first place a natural restriction onMT that does not impact
correctness. Second we introduce an approximation involv-
ing MΣ that, importantly, does not rule out consistent tra-
jectories. Instead, some trajectories that are not consistent
with past observations may be admitted, with the possibility
that future observations will eliminate them. These problem
modifications avoid replication of many variables inΠ and
D, as well as corresponding constraints fromMT andMΣ.

RestrictingMT
We restrictMT as doLivingstoneandBurton (Williams &
Nayak 1997): a component moves to a failure state with
equal probability from any state, and except for failures a
component that does not receive a command idles in its cur-
rent state.MT is limited to the forms:

(τy,t = τfailure) ⇒ yt+1 = yfailure

(Cy,t = C∗) ∧ φt ∧ (τy,t = nominal) ⇒ yt+1 = y∗

(Cy,t = idle) ∧ (τy,t = nominal) ⇒ yt+1 = yt

whereφt is a propositional formula overΠt∪Dt, C
∗ ∈

δ(Cy,t), nominal ∈ δ(τy,t) andτfail ∈ δ(τy,t). Formulae
of the first form model failures while formulae of the second
form model nominal, commanded transitions. Formula of
the third form are frame axioms that encode our assumption
that devices that do receive a command remain in their cur-
rent state. We replaceφt with implicantπt, an equivalent
formula involving onlyΠt. Intuitively φt is a formula in-
volvingD that, givenMΣ and an assignment toΠ, allows
us to infer ifCy,t propagates through a set of components to
componenty. To formπt, we replace each assignment toDt

with a set of assignments fromΠt that imply theDt assign-
ment underMΣ. We expect that for the type of clausesMT
contains, growth inπt will be proportional to the length of
the component chain that transmitsCy,t, which ranged from
1 to 5 in (Bernardet al. 1998). Our experience supports this
hypothesis. This growth is offset as non-idle, non-failure
clauses take the following form which is independent ofD.

(Cy,t = C∗) ∧ πt ∧ (τy,t = nominal) ⇒ yt+1 = y∗

Given aCy,t which is not idle, in order to determine consis-
tency withMT we now need only introduceCy,t, τy,t and
those select members ofΠt that appear inπt.

Eliminating intermediate observations
MΣ remains, and requires introduction of all variables in
Πt andDt in order to check consistency againstOt. We
proceed by eliminating all variablesOt for values oft suf-
ficiently far in the past. That is to say, transition choices
are only constrained by consistency between the trajectories
they imply and recent observations. As the system evolves,
variables representing older observations and the copies of
MΣ that constrain them are unneeded. For the portions of
the trajectory whereMΣ is not introduced, we need not
introduceD and need only introduce the limited portion of
Πt required byMT . This is of course an approximation.
It is now possible to choose transition assignments that are
inconsistent with the discarded observations, resulting in an
“imposter” trajectory. This approximation has several im-
portant features. First, it is a conservative approximation in
that no consistent trajectories are eliminated. Second, all
trajectories are checked against new observations, and im-
posters are eliminated as soon as they fail to describe the
on-going evolution of the system. Finally if conflicts are
recorded inConflictDB, no partial assignment toT that
was discovered to be in conflict with the observations will
be reconsidered, even after observations are discarded. Thus
we can only admit an imposter in the case where a transi-
tion choice is in conflict with an observation, but the choice
is not considered until after the conflicting observation has
been discarded.

Selective Model Extension
Based upon these restrictions, the procedureextendintro-
duces into time stept only the small fraction of the model
involved with the evolution of the system due to the com-
mandCy,t = C∗. The resulting problem size per time step is
proportional to| πt |. This hinges upon Theorem 1. For the
purpose of discussion we will assume that for each time step
t there exists only oney for whichCy,t 6= idle. The proofs
can be extended to parallel commanding.

Theorem 1 AssumeCy,t = C∗, C∗ 6= idle, and for allx 6=
y, Cx,t = idle. Consider the formula ofMT

(Cy,t = C∗) ∧ πt ∧ (τy,t = nominal)⇒ yy+1 = y∗

For all state variablesxt, x 6= y, if xt /∈ πt, then an equiva-
lent consistency problem is formed by replacingxt, τx,t and
all formulae ofMT involving these variables with a con-
straint betweenxt−1 andxt+1.

Space precludes inclusion of the complete proof. Intuitively,
there are no witnesses to the value ofxt except forxt−1
andxt+1, which can be constrained directly. Ifxt is as de-
scribed, then the only clauses involvingxt are of the form:

(Cx,t−1 = C∗) ∧ φt−1 ∧ (τx,t−1 = nominal) ⇒xt = x∗

(Cx,t−1 = idle) ∧ (τx,t−1 = nominal) ⇒xt = xt−1

(τx,t−1 = τfail) ⇒xt = xfail

(Cx,t = idle) ∧ (τx,t = nominal) ⇒xt+1 = xt

(τx,t = τfail) ⇒xt+1 = xfail

The variablext can only impact the consistency of the sys-
tem via the assignments toτx,t−1 andτx,t. Given the in-
dependence assumptions, assigning failures to both is indis-
tinguishable from and less likely than assigningτx,t−1 =
nominal andτx,t to a failure, while assigning a failure to
one is equivalent to assigning a failure to the other. Thus
we need only considerτx,t−1 = τx,t = nominal and
τx,t−1 = nominal, τx,t = τfail. In the nominal case,xt
is equivalent toxt+1 and can be eliminated. In the failure
case, the assignment toxt has no impact onxt+1 and can
be eliminated. The above formula are rendered equivalent
to the following reduced set:

(Cx,t−1 = C∗) ∧ πt−1 ∧ (τx,t−1 = nominal) ⇒xt+1 = x∗

(Cx,t−1 = idle) ∧ (τx,t−1 = nominal) ⇒xt+1 = xt−1

(τx,t−1 = τfail) ⇒xt+1 = xfail

In fact, at timetwe will know whether or notCx,t−1 = idle,
and therefore we need only introduce one of the first two
formulae. Theextend procedure repeatedly applies Theo-
rem 1 to avoid introducing a variable or constraints forxt
when there have been no witnesses toxt and it is possible
to constrainxt+1 directly from xt−1. When a command
is introduced, the compiledMT determines what clauses
should be added to constrain the nominal transition ofyt un-
derCy,t. State variables appearing in the introduced clauses
are added, along with constraints representing their idle or
failure transitions. By reducing the number of variables and
clauses introduced at each time step, we reduce the consis-
tency problem involved in checking a trajectory to a num-
ber of variables proportional tom × | πt |. The number of
clauses is proportional tom × (| πt | + k) wherek is the
number of failure values perτy domain.

Conflict Coverage Search
The strengths of efficiently tracking a partial belief state are
merged with the flexibility of incrementally enumerating be-
lief states in theCoverTrackprocedure of Figure 7.TSet is
a superset of all consistent trajectories of rankγ, as returned
by a previous call toCoverTrack. As described above,ex-
tend adds to the transition system the variables needed to
represent the outcomes of the current command. All trajec-
tories are augmented by the new transition variables, which
are assigned nominal transition, and checked for consis-
tency. Any inconsistent trajectory requires additional fail-
ures above rankγ, and is discarded as relatively implausible.
The survivors are a superset of all consistent trajectories of
rank γ. If this set is not empty, it is returned. Otherwise,
the most likely trajectory has a rank greater thanγ. The
GenerateCoveralgorithm generates all assignments toT of

proc CoverTrack(cmd, obs, TSet,ConflictDB, γ) {
/*Extend the system addingΠt to Π, T t to T */
extend(Π,T , cmd);
/*Extend trajectories at currentγ */
AssignT t to nominal, 0 rank assignment.
for trajectory inTSet

trajectory = trajectory∪T t;
/*Check trajectories for consistency, upγ if needed*/
AssignO according toobs received;
Survivors =∅;
loop{

for trajectory inTSet {
conflict=checkConsistency(trajectory);
if (conflict) then

push(conflict,ConflictDB);
else

push(trajectory,survivors);}
if (survivors)then return survivors;
/*Ran out of trajectories. Find more at next rank*/
γ = γ + 1;
TSet=GenerateCover(T ,ConflictDB,γ);
}

Figure 7: Conflict Coverage Tracking Procedure

a given rank that cover all known conflicts. A conflict is
covered if at least one of the variables in the conflict is as-
signed to an assignment that does not appear in the conflict.
Intuitively, we leave theτy,t at their zero rank values, intro-
ducing reassignment only to avoid conflicts, with a total cost
of γ. This is the NP-hardhitting setproblem. The contents
of ConflictDB andγ will determine whether this problem
is tractable. Because of the loss of observations at past time
points,GenerateCoverreturns superset of all consistent rank
γ trajectories. If at least one trajectory is consistent with the
current observations, it is returned. If not,γ is increased.

Finite Horizons
While selective extension reduces the variables per time
step, we still require an unbounded number of variables over
time. We avoid this requirement by summarizing sets ofτy,t
variables beyond a horizonh in the past into a single vari-
ableτh. This horizon is fixed relative to the present, so at
time stepm, only theT variablesτy,m−h throughτy,m are
required. Consider Figure 6 extended to some time stepm.
The variablesτy,0 throughτy,m have been introduced to rep-
resent choices in the system’s evolution. When tracking the
system, we incrementally generate the few most likely con-
sistent assignments to allτy,t, representing the most likely
consistent trajectories. Note that eachm-step trajectory con-
tains an assignment toτy,0 andτy,1 that appears among the
most likely given a potentially large amount of information
gained from time steps 0 throughm. Each such assignment
also induces an assignment uponΠ2, for exampley2 = y∗.
Intuitively, we replace each ofl likely assignments toτy,0
andτy,1 with an assignmentτh = choicel that has the same
rank. We may then replaceMT 2 with l clauses of the form
τh = choicel⇒y2 = y∗. The summary variableτh restricts
choices for the initial portion of the trajectory to the partial

0

5

0 10 20 30Step

T
ra

je
ct

or
ie

s

0
0.05
0.1
0.15
0.2

Se
co

nd
sCPU Time Trajectories

Figure 8: ISPP - Independent failures at steps 27, 32 and 33

trajectories that appeared most likely after being extended
for some time. By summarizing thel most likely assign-
ments toτh and all τy,2 into a new variableτh′ when the
front of the transition system is extended, we can maintain
a fixed sized problem representation. Since our search al-
gorithms are continually considering the most likely choices
for T and inferring the implications uponΠ in order to deter-
mine consistency, this is a relatively low cost approximation
to compute.

Results
L2 has been implemented in C++ in a modular form that
allows alternative search and consistency procedures to be
plugged into the transition system framework. The tests de-
scribed below were performed usingCoverTrackand propo-
sitional consistency as determined by an LTMS, running un-
der Windows NT on a 550Mhz Pentium III. Observations
were kept for one step only. No horizon was used.

L2 correctly tracks the canonical scenarios known to con-
found Livingstone. Consider Example 2. When the pump
is turned on,Livingstonefinds two conflicts in the current
mode assignments: valve v1 cannot be open, and valve v2
cannot be open. It thus fails both valves.L2 finds the fol-
lowing sets of devices that could not have both transitioned
nominally:{VDU, v1}, {VDU,v2}. The lowest cost cover-
ing is to fail the VDU at time step 0. Many more interesting
scenarios have been demonstrated. If the VDU is failed and
v1 is commanded open, the trajectory wherein v1 is stuck
will be tracked if that is more likely than a VDU failure. If
v2 is later commanded and no flow results, the v1 failure is
dropped and the trajectory where the VDU failed in the past
is found. If the VDU is resettable, the trajectory wherein
the VDU has failed in a resettable manner is first tracked
when multiple valves fail to open. If the VDU is reset and
the valves again fail to open,L2 may find a trajectory where
the valves were stuck all along, one that replaces the past
resettable VDU failure with a permanent failure, or both,
depending upon the ranks of the various failures.

Longer runs on more complex models written by
Livingstoneusers rather than the authors were also per-
formed. The ISPP model has 59 components and represents
a chemical processor designed to produce rocket fuel from
the Martian atmosphere. Itsflow failure requires far more
time for diagnosis underLivingstonethan any other scenario
we have encountered. Figure 8 illustrates a 33 step track
of the model, approximating one day’s worth of commands.
On the27th step, the flow failure becomes observable. On
steps 32 and 33 simpler, unrelated failures occur. Figure 8
illustrates a second tracking run of the same model. Note

1

10

100

1000

10000

7 12 17 22 27Step

T
ra

je
ct

or
ie

s

0.001

0.1

10

1000

Se
co

nd
sTracked Considered CPU Time

Figure 9: ISPP - 4 Identical failures over 27 Steps

0

10

20

5 135 265 405 535Step

CPU Time

Figure 10: CB - 39 Identical failures over 618 Steps

that the time axis is logarithmic. On step 15 the flow failure
is introduced. Repair actions are taken and the failure is im-
mediately reintroduced, until a total of four identical failures
have occurred. The CB model of 24 electrical components
connected in series and parallel was tracked in runs of 618
steps. Figure 10 illustrates a run wherein every 16 steps the
same set of devices is turned on, a device fails and is reset,
and the devices are turned off. The device fails a total of 39
times. Additional runs were made on both models.

Our results suggest the following.Model growth per time
step is small. ISPP begins at 2933 clauses and grows by
an average of 36 clauses per time step. CB begins at 1126
clauses and grows by an average of 44 clauses per time step.
Tracking time steps where no failure occurs takes a very
small amount of CPU time.Note that in Figure 8 the steps
before the first failure occurs require a negligible amount of
CPU time. The nominal steps after the failure take slightly
more time, as 8 trajectories are being tracked, but the cost is
still negligible.Keeping a history does not induce an unrea-
sonable cost when diagnosing a single failure.When the
nominal trajectory is ruled out we have a single, long con-
flict andγ = 1, leading to a simple coverage problem. The
CPU time for a single CB failure scenario is below clock
resolution whether 15 or over 600 nominal steps precede the
failure. In Figure 9,L2 finds the eight trajectories that ex-
plain the failure that became observable on step 27 in 0.19
seconds.Because of the accumulation of conflicts, tracking
the system throughk failures spread over time can be an eas-
ier problem than diagnosing a single failure of cardinalityk.
Consider the run of Figure 8. On step 27, the flow failure oc-
curs, causing the large spike in CPU time. Eight trajectories
result and are tracked until step 32. On step 32, a simpler,
unrelated failure occurs, and none of the 8 trajectories is con-
sistent when extended by the nominal transition. Note that
L2 must now rediagnose the entire history of the system in-
cluding the flow failure. It does so in just 0.08 seconds, less
than half of the time required to diagnose the flow failure
alone. The key to this behavior is the conflicts. On step 27,
the nominal trajectory is ruled out andConflictDB con-
tains a single conflict.GenerateCoverreturns 28 candidate

trajectories, 20 of which are ruled out, adding another 15
candidates toConflictDB. Calling GenerateCoverwith
the sameγ on these conflicts almost immediately returns
just the 8 consistent candidates. On step 32, the 8 diagnoses
are ruled out by conflicts resulting from the simple failure.
Since the conflicts from the simple failure involve none of
the variables from the flow failure conflicts, the problem de-
composes into two subproblems, one of which has previ-
ously been solved and memoized by the conflicts.For these
classes of problems, L2 has adequate performance.As a
practical matter, each test above executes several times faster
thanLivingstone’s single diagnosis of the flow failure. On
the above problems, the additional work performed is dom-
inated by the size and speed benefits of porting from Lisp.
Unfortunately, trackingk related failures over time can also
be as computationally intensive as diagnosing a cardinality
k failure. Figure 9 illustrates a sequence of failures where
the conflict coverage problem does not decompose. At each
time peak, the flow failure has occurred again. The conflicts
generated by the fourth failure involve exactly the devices
involved in the first three failures. As a result, the time re-
quired to solve the hitting set problem and the number of
inconsistent trajectories considered rises dramatically. At
the fourth failure, 2694 candidates are returned in 174 sec-
onds. An additional 33 seconds are spent determining all but
8 of them are inconsistent. Figure 10 clearly shows the ex-
ponential growth of tracking time as the number of failures
involving the same device grows.

Future Work
Interleaving consistency checking and conflict coverage
may significantly cut down on the number of candidates re-
turned byGenerateCover. We have not yet run tests with a
horizon. A fixed horizon limits the search that can be done
and cuts off consideration of overlapping conflicts beyond
the horizon. A more interesting approach is to iteratively
deepen the horizon as time allows or uncertainty requires.
A recency bias may be a practical heuristic. Only exploring
each device’s history up to the last point it was considered
to have failed should reduce the explosion in possible tra-
jectories. Selectively reintroducing observations and small
portions ofMΣ at past time points should also clamp the
growth of trajectories. We are currently investigating these
and other extensions toL2. The resulting system will be
evaluated on Earth-bound testbeds representing an interfer-
ometer and a Mars propellant plant. In addition, it will be
flown as an experiment on the X-34 rocket plane in 2001
and the X-37 orbital vehicle in 2002.

Related Work
The problem described is a partially observable Markov
decision process with focus placed upon belief revision.
(Friedman & Halpern 1999) provides an excellent synthe-
sis of the literature in belief revision and belief update. The
authors describe a general, plausibility-based temporal logic
framework that can be used to describe revision methods
such asL2. There also exists a large body of work con-
cerning approximate belief update. (Boyen & Koller 1998)

for example provides an approximate, factored belief state
with a bounded error that can be updated without enumerat-
ing the state space. Unfortunately, the systems we consider
have inadequate mixing rates to apply this approximation.
L2 differs from this work and the other approximations of
which the authors are aware in that it uses history to com-
pensate for not having a sufficient statistic.

Conclusions
This paper presents incremental belief state generation as an
alternative to belief revision. The described approximations
create a family of representations that track an exact model
for a number of steps, then track a reduced model, then
summarize over the most likely initial trajectories. The uni-
form nature of the three abstractions allows a single, simple
search to be employed.CoverTrackcombines partial belief
state propagation with the flexibility of the transition sys-
tem representation. It is highly efficient when failures are
sufficiently independent. We are investigating methods to
improve performance when multiple failures involving the
same components cause a highly unconstrained search.

Acknowledgements
Daniel J. Clancy, Leslie Pack Kaelbling, Brian Williams and
three anonymous reviewers provided valuable comments on
this work. Shirley Pepke provided valuable comments and
software engineering. The Embedded Technology Group at
NASA KSC developed the CB and ISPP domain models.

References
Bernard, D. E.; Dorais, G. A.; Fry, C.; Jr., E. B. G.; Kanefsky,
B.; Kurien, J.; Millar, W.; Muscettola, N.; Nayak, P. P.; Pell, B.;
Rajan, K.; Rouquette, N.; Smith, B.; and Williams, B. C. 1998.
Design of the remote agent experiment for spacecraft autonomy.
In Procs. IEEE Aerospace.

Boyen, X., and Koller, D. 1998. Tractable inference for complex
stochastic processes. InProcs. UAI-98, 33–42.

de Kleer, J., and Williams, B. C. 1989. Diagnosis with behavioral
modes. InProcs. IJCAI-89, 1324–1330.

Dressler, O., and Struss, P. 1992. Back to defaults: Characterizing
and computing diagnoses as coherent assumption sets. InProcs.
ECAI-92.
Friedman, N., and Halpern, J. Y. 1999. Modeling belief in dy-
namic systems part ii: Revision and update.JAIR10:117–167.
Goldszmidt, M., and Pearl, J. 1992. Rank-based systems: A
simple approach to belief revision, belief update, and reasoning
about evidence and actions. InProcs. KR-92, 661–672.

Hamscher, W.; Console, L.; and de Kleer, J. 1992.Readings in
Model-Based Diagnosis. San Mateo, CA: Morgan Kaufmann.

Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C. 1998.
Remote Agent: To boldly go where no AI system has gone before.
Artificial Intelligence103:5–47.

Struss, P. 1997. Fundamentals of model-based diagnosis of dy-
namic systems. InProcs. IJCAI-97. 480–485.

Williams, B. C., and Nayak, P. P. 1996. A model-based approach
to reactive self-configuring systems. InProcs. AAAI-96, 971–978.

Williams, B. C., and Nayak, P. P. 1997. A reactive planner for a
model-based executive. InProcs. IJCAI-97.

